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Steady Boltzmann Equation 

R. l l lner  i and J.  S t r u c k m e i e r  t, z 

Received August 9. 1995;final December 12, 1995 

We discuss steady boundary value problems for the Boltzmann equation with 
inflow and diffusive boundary conditions in one, two, and three dimensions, 
with suitable truncations of the collision kernel. General existence and unique- 
ness results are obtained if the domain is sufficiently small. In one dimension, 
the existence of solutions on general intervals is obtained by abstract fixed-point 
theory. 
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1. I N T R O D U C T I O N  

We consider  the steady Bol tzmann  equa t ion  

v . V , . f = Q ( f ) ,  xes'2,  v e R  3 (1.1) 

on the mul t id imens iona l  doma in  I2 c R" with various b o u n d a r y  condi t ions  
on 092 and  n = I, 2 or 3. Here Q ( f )  denotes the collision opera tor  writ ten 
in the form 

Q ( f )  = Q + ( f ) - f L ( f )  

where Q + ( f )  stands for the gain term, f L ( f )  for the loss term due to 
binary collision of gas particles, 
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Q+ J =f.3f, v, i/v',/d,, dr, 
+ 

L ( f ) = ; n  3 ;s B(lv-v . l ,n)  f(v.)&Tdv. 
+ 

and S+ is the hemisphere corresponding to ( v -  v . ,  i i )>  0. The pair (v', v,) 
is given by the collision transformation 

by 

J:  (v, I1, v . ) - - ,  (v', - n ,  v . )  

v '  = v - - n ( v - -  v , ,  iT) 

t 
I) , ~ V ,  "1-11( V -  I) , , 17) 

Unless mentioned otherwise, we assume the following kind of interaction 
law for binary collisions: For  v ~ 11~ 3 and n e S~_, we assume that 

B(Iv-v.], n)= Iv-v . I  ~ h(O) (1.2) 

where 0 is the polar angle of n relative to a polar axis in direction v -  v. .  
The function h is assumed to be integrable on [0, ~] with ~s.h(O)dn= 1 
and the integer k is chosen out of the set { -  1, 0, 1}, which describes 
Maxwellian molecules (k = 0), a hard-sphere gas (k = 1 ), and a soft-sphere 
gas (k = - 1 ) .  Hence we cover three classical examples of molecular inter- 
action laws. 

In Section 2, we use the Kaniel-Shinbrot iteration schemC ~ to prove 
a general existence and uniqueness result for a truncated problem; the colli- 
sion kernel is modified such that collisions in which one of the (pre- or 
postcollisional) velocities has modulus less than e are disregarded, and the 
size of the domain must be bounded in terms of e. 

Section 2.2 deals with precribed influx boundary conditions, whereas 
partial results on diffusive boundary conditions are presented in Section 2.3. 
In this subsection, the albedo operator is introduced and used to reduce 
the boundary value problem to a suitable fixed-point operator. 

In Section 3, we generalize the existing global existence results for 
one-dimensional slabs from refs. 2 and 3 to purely diffusive boundary 
conditions. 

Finally, in Section 4, we give some a priori estimates for the full, two- 
or three-dimensional boundary value problem for the steady Boltzmann 
equation, in the hope that these estimates will eventually turn out to be 
useful for existence theorems. 



Steady Boltzmann Equation 429 

2. LOCAL EXISTENCE RESULTS 

2.1. Truncation of the Collision Kernel 

Due to the singular limit t, = 0 of Eq. ( 1.1 ), we have to eliminate colli- 
sions between particles with small velocities. A formal solution of (1.1) can 
be derived by integrating along a characteristic line starting at some 
boundary point x e0/2. The reason to eliminate small velocities from the 
collision process is to get an upper bound on the "traveling time" of a 
particle through the domain g2. 

We introduce the following truncation of the collision kernel B: for 
e > 0 arbitrary but fixed let 

B~(t,, v, ,n)= {~ ~. [v-v*[* h(O) if min{lvl, Iv.I, Iv'l, Iv.I} >e 
otherwise 

with c , > 0  such that ~s+Bc(v,v,,n)dn=iv-v,I and k e { - 1 , 0 , 1 } .  
Further, let Q" be the collision operator with B replaced by B <. 

The local proof is based on some a priori estimates on L(f), where f 
is a Maxwellian distribution. For the collision kernels B and B" given 
above we find the following result. 

Proposition 2.1. Assume that f i s  a (normalized) Maxwellian 

Then 

/ f l  "x 3/2 " ~ 3  
f ( v )= t7  ) e -is'', t,e 

Iirf(v/_ ~ if k = 0 

Ivl! if k = - I  
L(f)(v) = ~ It'l 

~../P'~/~I~ e-P'" + ( ~  + ,v,'-) err(v~ ' v ' )~  if k = 1 

Proof. Because f is a (normalized) Maxwellian, we obtain, using 
spherical coordinates, 

- (rZ+ JviZ-2r  [vl x)k/'-r2e-n;dxdr (2.1) L(f)(v)=Dt \~z/ o -1 

822/85/3-4-9 
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and, i f k = O ,  L(f) (v)= 1 for all v 6 ~  3. If k =  - 1 ,  Eq. (2.1) reads 

(!)-'[ r '' s,- ] L(f) (v)  = 4 n  e-/S~- dr + re-IS;dr 
~0 ~'] vl 

__ erf{x/~ Ivt) 

It, I 

I f k ~  l, Eq. (2.1) reads 

3 k, nJ ,of Iv[ rZe-/~"'dr+ I,l (3r2+[vl2)re-a'-~dr 

, . ( +  = ~ e - / " ' +  + If'l-" I 

R e m a r k  2,2.  In part icular,  if v =  0, 

I I if k = 0  

L( . f ) (0)= 2(fl/n} ~/2 if k = - 1  

~ 2 / x / ~  if k = l  

For the truncated collision kernel B" we get the following result. 

P r o p o s i t i o n  2.3. Assume t h a t f i s  a (normalized) Maxwellian 

and e > O; then 

where 

!/312 []~3 
. / ( t , )  = e - I j '  "- , r E  

L=(.f)( t  ' } = L( f ) (v )  + A./. 

z i t =  ~ IVl L \ ~ /  J 

] 1 I - / f l \ i /2  f , 2 , l \  /s~' / 1 , \  1 
t ~  I c,;) =t ~ M-+~-+#,,- --t~+ J,~-)~ 
I 
\ if k = i  
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Proof .  Using the same technique as given above, the results are 
obtained by changing the limits of the outer integral on the right-hand side 
(2.1) to the interval [e, oz]. II 

Remark 2.4. The explicit formula given in Proposition 2.3 is used 
in the following subsection to show that the "beginning conditions" of the 
Kaniel-Shinbrot iteration scheme cat be satisfied if the domain /2 is 
sufficiently small. 

2.2. Existence Theorem for Prescribed Boundary Values 

Consider for given e > 0 the boundary value problem 

v. V., . f  + f L ~ ( f )  = Q + ( f )  (2.2) 

with some instream conditions at the boundary 0/2 

f ( x , v ) = q ~ ( x , v ) ,  x~O/2 ,  v.n(x)  > 0 (2.3) 

We assume that we have upper and lower bounds on q~ of the type 

C 1 e-;'"'- <~ q~(x, v) <<, C , e  . . . .  "- (2.4) 

For simplicity we use in the following the notation L = L ~ and Q + = Q+.  

Theorem 2.5. For any e > 0 ,  k =  - 1 , 0 ,  or 1, and/2(e)  sufficiently 
small, there exists a solution of the boundary value problem (2.2)-(2.4). 
The smallness condition on /2 is of the type 

diam(/2) ~< C. e 

where the constant depends on q~. 

Proof .  We construct a solution via the Kaniel-Shinbrot iteration 
scheme. ~l~ Define two sequences {1,,},,~ and {u, ,} , ,~ by 

v. V,./,, + I + l,,+ I L(u,,) = Q +(I,,) (2.5) 

v. V, u,,+ I + u,,+ i L(I,,) = Q+(u,,)  (2.6) 

together with boundary conditions 

l , ,+~=u, ,+j=qs ,  x~O/2 ,  v - n ( x ) > 0  

and let l o=lo (v )  and Uo=Uo(V ) be two global Maxwellians with 
lo(v) < r v) < Uo(V) for all x ~ 0/2. A straightforward induction shows 
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that  the i teration defined by (2.5)-(2.6) leads to m o n o t o n e  and bounded  
sequences in the form 

O<~lo<~l] <~12<~ " ~ l , , ~ u , , ~ u , , _ l  <<. " "  <~Uo 

as long as we are able to choose l o and Uo such that  the "beginning 
condi t ions"  

Io <~1] (2.7) 

and 

ut ~< Uo (2.8) 

will be satisfied. If  Ivl < e ,  we simply get 

I,,(x, v) = qS(z(x, v), v) = u,,(x, v) Vn e N 

where 

z (x ,  v) = x - tv e Of  2, t =  inf{r ;  x - r v e O f 2 }  
v : >O  

What  remains is to investigate the case where [v[ > e. 
The equat ions  for 11 and u I read 

/-'" Vx/l + li L(uo)  = Q + ( lo) (2.9) 

v. v.,.ul + ul L( lo) = Q + (uo) (2.10) 

Because we assume that  lo and u o are (global)  Maxwell ians,  we have 

Q + ( t o ) = l o L ( l o )  

Q + ( u o ) = u o L ( u o )  

Denote  Lo = L ( / o )  and U o = L ( u o ) .  In tegra t ing Eqs. (2.9) and (2.10) a long 
a characterist ic yields 

l l (x ,  v) = e -  uos( ...... )qS(x - s (x ,  v) v, v) + ( I -- e -  uo.,.( ...... )) Lolo 
uo 

= - -  ( L~ LOUo lo + e-vos(  ..... ) q S ( x -  s (x ,  v) v, v ) -  Uo o j  
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and 

u,(x,  v) = e -L~ ...... ) r  v) v, v) + (1 - e -L"sl ...... ~) Uouo 
Lo 

Uo _~.,., I (  ...... LoU~ ) = - - u o + e  r  v) v, v ) - -7- -Uo 
Lo 

with L o = L o ( v )  and Uo= Uo(v). 
Here s(x, v) denotes the "time" a particle with velocity v needs to 

move from a boundary point x -  s(x, v) v to x, (4~ i.e., 

s(x, v)= inf{ r; x - r v e O I 2 ,  v . n ( x - r v ) > O }  
1::>0 

Inequalities (2.7) and (2.8) will be satisfied if 

and 

e_ v0.,. I ...... )> U o - L o  (2.11) 
(~/lo) Uo - Lo 

e--Lo.,'~ ...... I>i Uo--Lo (2.12) 
Uo - ( q~/Uo) Lo 

which should hold for all x e ~  and t,e R 3 with Iv I >e. 
The right-hand side of (2.11) can be estimated by 

Uo -- Lo _~ 
(~/Io) Uo - Lo <~ 

Hence, assuming that lo and Uo are given by 

l o = c ] e - " -  (2.13) 

Uo = c,_e . . . .  (2.14) 

~ 

with c~ < C 1 and c2 > C2 according to (2.4), we can choose, for a given 
c_,, c] sufficiently small to fulfill (2.11) as long as s(x, v )Uo is uniformly 
bounded with respect to xEI2 and v~ R 3, Iv[ >e. 

Condition (2.12) turns out to be more restrictive: using the estimates 

e -L~ ...... ~ >t 1 -- Los(x,  v) 
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and 

( O ) L o  U ~ 1 7 6  - 4 1 +  - 1  
Uo Lo To 

we see that (2.12) will hold, while 

1 
s , , .  

which obviously restricts the size of (2. Because we use the truncated 
collision kernel as introduced in Section 2.1, we have 

diam( ~ ) 
s ( x , v ) ~ - -  V x ~ ,  velt~ 3, Ivl>e 

E 

where diam(g?) is the maximal distance between two boundary points. So 
we are able to satisfy the "beginning conditions" for /o  and u o if 

- ~ (2.15) 

where we still have to fix the constant c2. 
For the following estimates we use the explicit formulas for Lo and Uo 

as given by Proposition 2.3 to show that s(x, v) Uo is uniformly bounded 
and (2.15) can be satisfied for a sufficiently small domain Q. 

In the simplest case, i.e., k = 0 (Maxwellian molecules), Lo and Uo are 
uniformly bounded for x e ~  and v ~ N3, Ivl > e, by Proposition 2.3. 

Hence s(x, v)Uo is uniformly bounded and the restriction on the 
domain g2 reads 

diam(f2) ~ ~ ; )  4C2 

with c2 = 2C2. 
If k = - 1 ,  we estimate, using Proposition (2.3), 

4 
Uo ~< - ~c2 

and therefore s(x, v) Uo is uniformly bounded for x s Q  and ve  R 3, [v[ >e.  
The restriction on s reads 

with c2 = 2C2. 

diam(~)  ~< - 
8C2 
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Finally, if k = 1, we est imate 

S(X, 1)) U O ~ C  2 - -  
diam(f2)  

( M I + e M 2 + e Z M 3 )  

we find that  

and 

 iam, O> ( 
s(x, v)~< ]v-------~ ~< 1 - ~oo 

which should hold for all v e R 3, Iv] > e. Because ]v]/Uo is strictly positive 
and monoton ica l ly  increasing with ]v], we get 

f0C'x 3/2 ,~ 

diaml / (;) 2u0 
with c2 = 2C2. 

The  two sequences {/,,},,E ~ and {u,,},,E ~ are m o n o t o n e  and bounded  
and therefore convergent .  If  we assume that  

l =  lim l,, 
I !  ~ ,zr .  

u = lira u,, 
t l  ~ , r t 5  

v. V.,.l + lL(u)= Q +(l) 

v. V.,.u + uL(l) = Q +(u) 

together  with the bounda ry  condi t ion 

u - l = 0 ,  xeOf2, v . n ( x ) >  0 

It remains  to show that  l =  u. 
Define h(x, v )= u(x, v ) -  l(x, v). Then the equat ion for h reads 

v. Vh + hL(l) - lL(h) = Q +(u) - Q +(I) 

In tegra t ing  over  a3 and the domain  12 gives 

where M I ,  M_,, and M 3 a r e  some constants  depending only on 0~, respec- 
tively y. Fur thermore ,  we have 
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Because 

~2 fn 3 [ Q + ( u ) -  Q+(I)] dv d x =  fa In-, [uL(u)- lL(l)]  dv dx 

we get 

I~ fn3 v" Vh dv dx = Ia In3 (u + l) L(h) dv dx 

Applying the divergence theorem yields 

-fo.o..f, ..... olV"lh(x'v)dvd~Ix)=I,~In3 'u+')L(h)dvdx 

Because h(x, v)>10 and therefore L(h)(x, v)>~ 0, we get that h(x, v)= 0 a.e. 
on ~ x R 3, which completes the proof. 

R e m a r k  2.6. The restrictions on the size of the domain g2 depend 
- -by  construct ionIstrongly on the truncation parameter e. There is also a 
strong dependence on the given boundary flux ~. If ~ is sufficiently small, 
i.e., if the gas conditions are near to a vacuum, the restrictions on ~2 
become weaker. 

Within the given upper and lower bounds the solution of Theorem 2.5 
is unique. 

T h e o r e m  2.7. Suppose e > 0 given and g is a solution of (2.2)-(2.4) 
with 

Io(v)<~g(x, v)<~Uo(V) V x ~ ,  v~ ~3 

where / o and u o are the lower and upper bounds, respectively on the 
solution f given by Theorem 2.5. Then f = g almost everywhere. 

Proof. Because g is a solution, we have v .V , .g=Q+(g) -gL(g) .  
Suppose that l,, and u, are the nth iterations as formulated in Theorem 2.5. 
Then 

v. V.,_(g-/,) + ( g -  I,,) L(u,,_ ~) = gL(u,,_ ] - g )  + Q +(g) - Q +(I,_ ~) 

v. v,.(u,, - g )  + (u,, - g )  L(I,,_ ,) = g L ( g -  l,,_ l) + Q +(u,,_ ,) - Q +(g) 

and with lo ~< g ~< Uo we get inductively 



Steady Boltzmann Equation 437 

By Theorem 2.5 both sequences {l,,}.+ m and {u.}, ,+.  are convergent with 

lim I. = f =  lim u,, 

hence f = g almost everywhere. | 

2.3. Existence Theorems for Diffusive Boundary Conditions 

For diffusive boundary conditions we consider for any ~ > 0 the steady 
Boltzmann equation (2.2) together with the boundary condition 

.f(x, v)=m/j,.,.,(v) I It', .171 f(x, v,) dr, 
' . . t l  < 0  

Vx~O[2, v . n > 0  (2.16) 

where 

2f12(x) 
m/~l.,.l(v ) = _ _  e-/~l.,-I 3 (2.17) 

7[ 

and ~ ~< fl(x) <~ y, Vx �9 0[2. 
The diffusive boundary conditions are more difficult to handle. 

Obviously, f - 0  is a trivial solution of the problem. The homogeneity of 
the boundary condition suggests that a free parameter enters the problem, 
e.g., the mass M=Jo~m~f(x, v)dvdx. More about the choice of a free 
parameter can be found in Section 3. 

Remark 2.8. For the free transport equation, i.e., Eq. (2.2) without 
collision integral, the diffusive boundary conditions were already studied in 
ref. 4. 

In the following we prove partial results based on the theorems 
presented in Section 2.2. The idea is to investigate the so-called Albedo 
operator o~? which connects the in-and outgoing fluxes at the boundary 
0[2. 

With the result of Section 2.2 we are able to obtain a solution f(x, v) 
of the steady Boltzmann equation (2.2) by prescribing the ingoing flux 
q~(x, v). Hence the Albedo operator ~ '  is well defined: suppose that q~(x, v) 
is given for x e012 and t,~l~ 3 such that v . n ( x ) > 0 .  Then we have a 
solution f (x ,  v) on O •  R 3 with 

f (x ,v)=r xeO[2, v . n ( x ) > O  
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The outgoing flux f ( x ,  v) at the boundary 0g2 exactly defines the Albedo 
operator ,~', 

. e l [ r  x e O ~ ,  v-n(x) <0  

Now we are able to transform problem (2.2) with boundary condition 
(2.16) into a fixed-point problem: given the (inverse) temperature profile 
fl(x) on the boundary 0~, we are looking for a fixed point of the operator 

defined by 

( .~ ) (x ,  v)=mp~.,.,(v) f,,..,,i.,-)< o Iv..nl .4[qS](x, v.) dr,, 

for x e 0/2 and v. n(x) > 0. 

Remark  2.9. Due to the bounds on the solution f ( x , v ) ,  the 
operator :N is well defined. 

If a fixed point �9 of ,~ exists, then using the results of Section 2.2, we 
get a solution of (2.2) which fulfills the diffusive boundary conditions 
formulated in (2.16). 

For simplicity we first consider the simpler problem of a free transport 
equation 

v -V , . f=0  (2.18) 

with boundary condition f ( x ,  v) = ~(x ,  v), x ~ 0[2, v. n(x) > O. 
The solution is given by 

f ( x ,  v )=  r v), v) (2.19) 

where z(x, v) is the corresponding boundary point for xEf2 following the 
characteristic line { x - s v ,  s > 0 }. 

Remark 2.10. Obviously (2.19) holds for arbitrary bounded 
domains ~2 without any restriction on the size of f2, as discussed in the 
previous section. 

Moreover, ~ '  is a linear operator with 

~ ' [ r  v) = q~(z(x, v), v) 

for x e ~  and v-n(x)<0. 
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Now consider Eq.(2.18) together with the diffusive boundary 
condition (2.16). We are then looking for a fixed point of the operator 
defined by 

(~ r  v)=rn/j~.~(v)f, Iv,.  nl r  v,), v , )dr ,  (2.20) 
' . . t ~ < O  

Because ~ '  is linear, one fixed point ~ of (2.20) directly leads to infinitely 
many fixed points by multiplying q> with a nonnegative constant c. The 
operator N can be used to compute explicit solutions of the free-flow 
boundary value problem (2.18), as follows. 

Theorem 2.11. Let q~ be a global Maxwellian 

r v)=ce -~''-, xes v e R  3 

and fl(x), x e 0/2, a given (inverse) temperature profile along the boundary 
0~. Then ~2r = ~q5 and .~q5 is a fixed point of ~ .  

Proof. If q> is a global Maxwellian, then 

c ~  c 
( ~ r  v)  = - -  = f l 2 ( x )  e - " ' 1 ' :  

2 ~ . 2  r e ~ s i x )  _ (2.21) 

and 

.~(.~r v )=  m/s~.,-, ~ Iv," I11 ~r162 v , ) d r ,  
' .  ';~ <,0 

Using (2.21) yields 

: ~ ( ~ ) ( x ,  v) =~m/sc,.~ Iv,-17[ fl2(z(x, v,)) e -p~:~ ...... . ' q  dr, (2.22) 
' .  . l l  "~ O 

The right-hand side of (2.22) can be written as ~4~ 

I~ Iv,. nl ~2e-I~":* dr, 
. - I~ '<0  

= l e ' n l  lv,13/32(y)e-aC"~u"C-dlv, lde 
. n ,  lel  = I 

where y is the corresponding boundary point of x e Of 2 in direction e. 
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Substituting r = ,,/@ Iv, I 

gives 

Hence, 

and calculating the remaining integrals 

I Iv, .  n{ )~2e -/h"-. dr ,  = ~- 
, , ,If <~0 2 

C 
N(.~q:')(x, v) = ~ fl-(x) e-/~*")"= (~q~)(x, v) 

and ~q5 is a fixed point of N, which completes the proof. II 

The Albedo operator ,~ of the Boltzmann equation is obviously non- 
linear. However, if �9 is a fixed point of ~ ,  then, multiplying ~ with an 
arbitrary constant c e R +, we find that cq~ is a fixed point of the equation 

v. V,.f  = _1 Q(f , f )  
c 

together with boundary condition (2.16). 
Because of the nonlinearity of ,4, the existence of a fixed point of 

(2.20) is nontrivial. For a given flux q~, let 

j(x) = I,,..<o Iv" 171 d [ ~ ] ( x ,  v) dv 

along the boundary 0~. Assuming that q~ is a fixed point of (2.20), we have 
that q:, must be of the form 

~(x, v)=j(x)m/~c,.~(v), xeOQ, v - n ( x ) > 0  

Hence, we are looking for a function j(x) such that 

j(x)=(#j)(x)=I, Iv.hi ~cl[jm/~](x, v)dv 
' . t l<~O 

(2.23) 

Remark  2.12. For the free transport equation the fixed points of 
(2.23) are given by the constant functions, i.e., j (x)= c ~ ~+. 

In the general multidimensional case, we cannot prove the existence of 
a j satisfying (2.23). However, if we assume that a solution exists, we can 
prove some a priori estimates, as follows. 
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L e m m a  2 .13 .  LetjsL~(Og2); then 

foa(~J)(x) da(x)= LaJ(x) da(x) 

Proof. Consider the problem 

v. V.,f  = O(f,f) (2.24) 

with boundary condition f(x, v)=j(x)m~.,.~(v) for all x eOY2, v.n(x)>O. 
Integrating (2.24) with respect to x and v and applying the divergence 
theorem yields 

L ,., > o [v . ,,l j(x) m/j,.,.,(v) dv da(x) 

=f~o f, ..... o Iv  ,,I xl.~, v)dv do(.,.i (2.25) 

Because of  mass conservation at 0[2, we have 

;o~ ~,,.,,>o [v .n[ j(x)m,,.,. ,(v)dv do(x)= fo j(.,') do(x) 

Hence, Eq. (2.257 reads 

fo~,.j(x) do(x)= L~2 f~..,, <0 Iv .n, sC'[jm/,](x, v)dv do(x) 

= f (:~j)(x) do(x) I 
JO O 

The energy flux of d[jmp](x, v) can be estimated as follows. 

L e m m a  2 .14 .  Let jeLl(Of2) and fl(x) be a founded (inverse) 
temperature profile along 0s Then 

fOa fv..'<O Iv .hi v2,~[J'mll](x, v)dv do(x)=2 foaj(x)/fl(x) do(x) 

Proof. Multiplying (2.24) by v 2 and integrating with respect to x and 
v yields 

;~ ~n, vv2V"f dx dv=O (2.26) 



442 IIIner and Struckmeier 

Applying the divergence theorem, we find that Eq. (2.26) reads 

I~ f, Iv.nl v2j(x) mlj,.,.,(v)dvda(x) 
.Q " . n > O  

- f~,, I ,,<o T~. ,,I v<,[~; , , , ,> .  ~/d,, d.lxl  =o  
Finally, 

f~o f~ . . . .  o I~.,,I c-j~.,-i ,,,,,...,I,,~ dv d ,  lxl = 2 f~, j(x~/~lxl d ,  lxl I 

In the one-dimensional case, t2 is an interval [0, a] ,  a > 0 on •, we 
have exactly two boundary points and the lemma above reads 

(~j)(O) + (~ j ) (a )  =riO) +j(a)  (2.27) 

Because all terms in (2.27) are nonnegative, ~ is a mapping from 
L , . = { ( x , y ) ~ R 2 ,  x + y = j }  into itself, where j is an arbitrary positive 
constant describing the amount of mass flux into the interval [0, a]. 

If a is small enough (with respect to j)  to apply the existence theorem 
of Section 2.2, we automatically get the existence of a fixed point, because 
~ :  L,. ~ L,, is a continuous mapping. 

T h e o r e m  2.15. On a sufficiently small interval [0, a]  ~ ~ there 
exists a solution of the boundary value problem (2.2) with diffusive 
boundary conditions (2.16). 

The generalization to multidimensions remains an open question, due 
to the lack of local estimates on (~j). 

3. G L O B A L  E X I S T E N C E  R E S U L T S  IN THE  
O N E - D I M E N S I O N A L  CASE 

Global existence results for the steady one-dimensional slab problem 
were given in ref. 3 for discrete-velocity models and in ref. 2 for the full 
Boltzmann equation. The boundary conditions were either prescribed 
fluxes at both sides--used in refs. 2 and 3- -or  prescribed flux at one side 
and diffusive conditions at the other side. ~3~ In the following two sections 
it is shown how to generalize these results to the case of purely diffusive 
boundary conditions. 
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3.1. D iscre te -Ve loc i ty  Models  

We recall the global existence result for discrete-velocity models as 
formulated in ref. 3. The discrete-velocity model in one space dimension is 
given by the set of ordinary differential equations 

4, = Q ' ( f ) ,  i =  1 ..... n (3.1) 

where f = ( f '  ..... f " )  are the particle densities associated with the 11 
admissible velocities u~ e R 3 and ~; are the x-components of the vectors ui. 
Each Q; has the form 

Q;(f)= Z A~, ( f~ f ' - f ! [  "j) 
j , k , I  

such that conservation of mass, momentum, and energy is fulfilled. 

Remark 3.1. The result given in ref. 3 even holds for more general 
types of collision terms Q( For  example, conservation of energy is not 
required. 

We consider (3.1) in the slab 0 < x < a under the additional assump- 
tion that ~ ~ 0  for all i =  1 ..... n. In ref. 3 it was shown that (3.1) together 
with the boundary conditions 

f i (O)=od,  4 j > 0  (c(~> 0) (3.2) 

. f~(a)=f l '~ + 4jfY(a), 4;<0 (/~i ~ 0) (3.3) 

has a global solution for arbitrary slab length a. Here, ~ +  ( Z - )  means 
that the sum is taken over all positive (negative) velocities 4j and the 
coefficients fli are normalized such that Z -  4ifl i=  - 1 .  

T h e o r e m  3.2, ~3~ The problem (3.1) with boundary conditions 
(3.2), (3.3) has a solution in [c$+],0 ,,. 

Here ~o+ denotes the nonnegative, continuous functions in the interval 
[0, a] and 0 ,, [~g+] is the Cartesian product o f n  copies of c~o. 

The boundary conditions formulated in (3.2) and (3.3) are not exactly 
diffusive boundary conditions as given in Section 2.3 because the ingoing 
flux on the left-hand side of the slab is prescribed. Complete diffusive 
boundary conditions will be of the form 
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f ' ( O ) = f l ~ o ~  - r ~,.>0 (3.4) 

f ' ( a ) = ~ f , Y ,  + ~jfJ(a), 3 , < 0  (3.5) 

w i t h Z  +r 1 a n d Z -  ~i~a = 1. 
However, the result formulated in ref. 3 can be used to show the 

existence of solutions of problem (3.1) together with the purely diffusive 
boundary conditions (3.4) and (3.5). As the boundary conditions (3.4), 
(3.5) are homogeneous in f ,  we expect a family of solutions (note that f = 0 
is a solution). It turns out that the outgoing flux j - ( 0 ) = Y ' . -  ]~j] f i (0)  can 
be chosen as a free parameter. 

Denote by j (x)  the mass flux inside the slab, i.e., j ( x ) = Z ~ j q x ) ,  
j + (x) = Y~ + ~ i f  i( x ), and j - ( x ) = Z - I~,1 f '(x).  Because of mass conserva- 
tion, every solution of (3.1) satisfies 

@x) 
= 0  

dx 

and with the boundary condition (3.3) we h a v e f l x ) = 0  for all 0 ~x<~a. 
Now consider Eq. (3.1) with boundary conditions 

i 0 i ~ - -  0 . f (  )=f loJ  ( ) ,  ~ , > 0  (3.6) 

"i i E + J (a) =fl~ ~j fqa) ,  ~;<0  (3.7) 

where ] - (0 )  is some given positive constant, Z + ~ f l ~ = l ,  and 
Z -  r = - 1. Due to the result of ref. 3 there exists a solution and 

dj(x) 
=0,  j (a)  = 0  

dx 

Hence j ( 0 ) =  0 and j - ( 0 ) = ] - ( 0 ) ,  so we can state the following result. 

T h e o r e m  3.3. The problem (3.1) with boundary conditions (3.4), 
(3.5) has a one-parameter family of solutions in o ,, [(g+ ] . The outgoing flux 
j - ( 0 )  parametrizes these solutions. 

Proof. Consider Eq.(3.1) with boundary conditions (3.6), (3.7). 
By Theorem3.2 the problem has a solution in [c.go],,. Because of 
j - ( 0 ) = y - ( 0 ) ,  the solution also fulfills the boundary conditions (3.4), 
(3.5). 
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3.2. M e a s u r e  So lu t ions  in a Slab 

In this section we consider the steady Boltzmann equation in a slab 
O~<x~<a 

• & = Q(f)  (3.8) 

where ~ denotes the x component of the velocity v. our final goal will be 
to show the existence of a solution of (3.8) together with the diffusive 
boundary conditions 

f(O, v)=j-(O)mo(v),  ~ > 0  

f (a , v )=j+(a)m, (v ) ,  { < 0  

(3.9) 

(3.10) 

and j - ( 0 ) = I r  I~1 f(O, v)dv, j +(a)= jr I~[ f(a, v) dr. Here, too(V) and 
m,(v) are two (normalized) half-space Maxwellians, 

2flo -po," and m.(v) 2fl~, e_/3o,. m o ( v ) = - - e  = (3.11) 

In ref. 2 an existence result for problem (3.8) together with the boundary 
conditions 

f(O, v)= fo(v) (3.12) 

f(a, v )=f , (v)  (3.13) 

was given. The solution was found in the space of measure-valued functions 
of x, 

x---,p.,., [0, a] --* M 

where M denotes the set of bounded measures on R 3. We outline the 
strategy followed in ref. 2, without giving all the technical details. 

The singl~ steps to the existence result are the following: first of all one 
passes to the measure formulation of problem (3.10), which yields the 
equation 

d 
-d~xA,. = Q(lt.,-, :t.,.) (3.14) 

822/85/3-4-10 
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in the sense of weak*-convergence of measures. The collision kernel is 
assumed to be of the form (1.2) with - 1 ~< k ~< 0. The kernel is first trun- 
cated in the same way as in Section 2.1 and further by a crude truncation 
of the form 

B '~ = B~k,~ 

with 

k ~ = S 1  if v2-q-v~(~-2,, min{]~[, 1~,1, I~'[, 1(',1} >6 ,  or [v-t,,[>,~ 
otherwise 

so that Eq. (3.14) is replaced by 

d 
~x/t., - = Q~(/L,-, It.,-) (3.15) 

with boundary conditions /tolcr and lt,~llr In the 
following we will use the notation lilt. 11 = sup.,. E to. ,,] ~ dlt.,-(v). 

The collision operator Q'~(It,., It.,.) can be written in the form 

Q~(/t.,.,/l.,_) = Q~+(ll,.,/z,.) - L~(r ll,. 

where Q +(ll.,.,/x,.), L~(ll.,.)/L,- are measures defined by 

(Q~+(lt.,-,l'.,.), q~} = I,,~,," f, B~(v,n, v ,)  cP(v) d(M.,.'~J) 

with dM.,. = dco(n) dlz,- • dlt,. and 

(L~(it,.)/t_,., ~p) = (it,., L~(/t.,.) ~o) 

Because of the truncation of B, we have 

~< 4~tc(~) I d~.,.(w) IlLa(/x.,.)(x)l[ 

with B ~ ~ C(6). 
Let X = ( ~ [ O , a ] ; M )  be the cone of all continuous functions 

[0, a]  ~ M and BR(0)c  X the set of all continuous measure-valued func- 
tions/x, such that Illt.II ~< R. For  r >_,4rtC(O) one studies the operators 

T(r): BR(0)--*X, v . = T ( r ) l t  (3.16) 
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defined by 

vollr =P~-, v~llr =P,;- (3.17) 

d 
r ~-.-xx v,. = 0 (3.18) 

for ]~[ ~ 8 and [~[ >/1/8 and 

d 
~-~--xxV,.+rp[p.](x) v,.=Q'~+(p.,.,p.,.)+rp[p.](x)p.,.-L'~(p.,.)p.,. (3.19) 

for 8 < I~l < 1/8, p i p . ]  = J dp. (v). 
The boundary value problem (3.17)-(3.19) has a unique solution v., 

and the mapping p. ---, v. is continuous from BR(0) into X. Because T(r) will 
in general not map BR(0) into itself, one introduces the retract 
TR: X--* BR(O), defined by 

I PR if IIft.[I ~<R 
( TRp .). = (3.20) 

~ , ~  p. if IIp.ll > R 

Now T R o Tit)BR(0) is relatively compact and has a fixed point in BR(0). 
To prove the existence of a fixed point of T(r) in some BR(0) it remains to 
show that the set of all fixed points of TR '~ T(r) is uniformly bounded. This 
was achieved using the conservation quantities of the Boltzmann equation. 
Finally it was shown--using the usual Cantor diagonalization--how to get 
rid of the crude truncation. 

In order to handle diffusive boundary conditions (3.9), (3.10) we first 
generalize the existence result given above to the case where the boundary con- 
dition (3.13 ) is replaced by general stochastic scattering conditions of the form 

. •  Ro(v'  ~ v) I~'1 f(a,  v) dv l g l f ( a ,  v l =  '>o 

with an appropriate boundary kernel R,,. In a second step we show 
--similar to the consideration in the previous section--how to extract the 
case of purel.y diffusive boundary conditions (3.9), (3.10). 

As in ref. 2, we consider the measure formulation of problem (3.8) 
together with the boundary conditions 

Po[ {~>oI =P~ (3.21) 

= ~  R , ( v ' - - , v )  IC'I �9 , , 'tt"I~'<~ '>o ~ap ,~v l  (3.22) 
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Here, the boundary 
conditions: c5~ 

kernel R, , ( v '~v )  should fulfill 

R>~0 

the following 

(3.23) 

R,(v'--*v) dv = 1 
< 0  

(3.24) 

(mass conservation), 

3c~>0 suchthat  fr R,,(v'~t,)J~ldv>~c~ (3.25) 

("spreading condition"), and 

3c~>0 suchthat  f c < o R " ( v ' ~ v )  vZdv<<'c2 (3.26) 

("energy condition"). 
Using the same truncation B ~ of the collision kernel as above, we 

define the operator T(r) as in (3.16), where the boundary conditions (3.17) 
are replaced by (3.21). Following the same analysis as in ref. 2, we are able 
to prove the existence of a fixed point of TR o T(r) BR(0), where TR is the 
retract defined in (3.20). As mentioned above, it remains to prove that the 
set of all fixed points of TR ,-, T(r) is uniformly bounded. This can be done 
following similar arguments as in ref. 2: 

L e m m a  3.4. For any solution l l  ~ of the equation 

Tn ~ T(r) it. ~ =/t.  ~ 

with boundary conditions (3.21) we have 

max I C- d/t].(v) < C(/l~ ) 
x~[O,a] 

Proof. Let j+(x) = Ir ~ dlz_,.(v), j - ( x )  = I~ <o Ill dl~,.tv), j = j +  - j - ,  
+ , ~z = p +  and p (x)=~>o~-dlt. , .(v),  p - ( x ) = ~ < o  d/t.,.(v), p + p - ;  then by 

the usual conservation laws, 

I~o ( t, ) d[  Q ~+ (~.,.,/L~,.) - L%~.,_) l~.,- ] (v) = 0 
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where ~o(v) = l ,  v, or v 2. Hence, iflt ~. is a fixed point of TR ~ T ( r ) ,  

d J = ( 2 _  1) rp 2 
dx 

and 
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where 2 = min{ R/[! T(r) l(ll, 1 }. 
Because p(x) >1 O, we have j(x) = j +(x) - j - (x) <~ j +(0) - j  -(0) and 

j(a) = j + ( a ) - j - ( a )  

= ~>o ~ dl'.,.(v)- ~ <o l~l dl'.,.(v) 

= ~ >o ~ dlt.,-(v)- fr <0 R.(v'-, v)I 'l dp.,.(v') dv 

= 0  

~[  L <o l~l dlto(v)] m [ L <o l~-13 dlto(V)] 

~< [ j + ( 0 ) ]  '/2 [ q - ( 0 ) ]  1/2 

where q+(x)=Ie,>o~v2dll.,.(v), q - ( x ) = ~ < o  Ill v-~@.,(v), 
q+(x) -  q-(X'). Furthermore, the energy flux q fulfills 

Therefore, j(x) >/0 for all 0 ~< x ~< a and especially j - (0) <~ j + (0). Further- 
more, by (3.27), p is nonincreasing and we just need to find an estimate on 
p(O) =p +(O) + p-(O). 

The ingoing momentum flux p § is given by the boundary condition 
at x = 0 ,  so it remains to estimate p-(0) .  By the Cauchy-Schwarz 
inequality, 

p-(O) =L<o I~1-' @o(V) 

i/2 

(3.28) 

and q(x)=  

and 

dq-(2-1)rpe<~O,  e=fv2dlt.,.(v) 
dx 

q + (a) + q-(O) <~ q+(0) + q - (a )  

ap 
- (2 - 1 ) rpj (3.27) 

dx 
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Hence, from (3.28) 

p- (0)  ~< [ j  +(0)] ,/2 [q +(0) + q- (a ) ]  1/2 

Now 

q-(a) <<. c2j +(a) 
because of (3.26) and 

j+(a)<.lp+(a) 
CI 

because of the "spreading condition" (3.25). Using (3.29), 
p(a) <~ p(O) yields 

P-(O)<~[J+(O)]'/2 {q+(o)+C2[p+(O)+p-(O)]} 

Recognizing that 

ab<~la2+eb 2, Ve, a,b>O 
g 

we get 
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(3.29) 

(3.30) 

(3.30), and 

Here, mo(V ) is a normalized Maxwellian with (inverse) temperature flo as 
given in (3.11) and R, should satisfy the conditions (3.23)-(3.26). This is 
indeed the case for the conditions (3.9) and (3.10), as pointed out in ref. 6. 

=~ no(v'~v) lr , ' v '  z~ll~<ol .>o I-~ az~'t ) (3.32) 

=L mpo(V) Ir d~o(V') (3.31) Poll~>ol '<o 

[ If ,  P-(0)~<l j+(0)+ee  q+(0)+ p+(0) + e ~ p - ( O ) ,  Ve>O 

from which we conclude that p-(O) is bounded. | 

We consider the problem (3.15) together with the (partial) diffusive 
boundary conditions 
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Theorem 3.5. For  any 3 > 0 ,  the problem (3.15) together with the 
boundary conditions (3.31), (3.32) has a one-parameter  family of measure 
solutions /~ . . . .  X. These solutions can be parametrized by the outgoing 
mass flux at x = 0. 

Proof. Let p.~ be as in Lemma 3.4; then 

sup (I , ..) .,-,to.ol o<~<,, -~<~<o .>o -j-rialto do+-~-dp.,. 
1/6 <:r --1/~>~ 

~ Cl(5) 

Here, Cl(3) is a constant which depends on the boundary values and on 
3, but not on r and R. Then, by the same argument as in ref. 2, one 
concludes that for rt =4~C(3)  there exists a fixed point p.~' of T(r~), i.e., 
T(rl ) Ft.*' = ,u.*'. 

Now we consider at x = 0  the (prescribed) measure #~- with density 
.7-(0) too(V), w h e r e y - ( 0 )  is some positive constant and mo is defined as in 
(3.31). What  remains to show is that the corresponding fixed point tt. ~' 
fulfills the condition 

L<o Ir d/-zo =Y-(O) 

This can be done with the same arguments as in the previous subsection. 
Because it. ~ is a fixed point of T(rl), we get by mass conservation the 
equation 

where j(x)= ~ ~ dp]). At x = a  we have, because of the mass conservation 
of the boundary kernel, j(a)= 0, from which we conclude that j (x)= 0 for 
all x e [ 0, a ]. Hence, at x = 0, this yields 

j - ( 0 )  = ~<o Ill dp~'= f~>o C dg, o + (3.33) 

Because p ~  is the measure with density ]-(0)too(V),  we get 

j - ( 0 )  = J'r >o y-(O) ~mo(v) dv =y-(O) 
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Hence, the fixed point r ~ is a solution which fulfills the boundary 
conditions (3.31), (3.32). 

Moreover, because j - ( 0 )  is some positive constant, there exists a one- 
parameter family of solutions for fixed boundary conditions [defined by 
the (inverse) temperature flo and the boundary kernel R , ]  and j - ( 0 )  
parametrizes this family. | 

Remark 3.6. The result given in Theorem 3.5 is more general than 
the problem formulated at the beginning, i.e., the steady Boltzmann equa- 
tion (3.8) together with the boundary conditions (3.9), (3.10). At x = a  an 
arbitrary boundary kernel R,, which satisfies the conditions (3.23)-(3.26) 
can be used. 

4. FURTHER RESULTS AND CONCLUDING REMARKS 

In two or more dimensions and without smallness conditions on the 
domain and truncations of the collision kernel, nothing about existence of 
solutions is known. 

We mention, without proof, two a priori estimates on solutions which 
can be proved along the lines given in ref. 7, by careful use of the 
invariants. Suppose f solves 

v V.,.f = Q ( f )  (4.1) 

on the bounded domain /2 c N", n = 1, 2, or 3. Then we can prove the 
following. 

Proposition 4.1. Consider Eq.(4.1) together with a boundary 
condition f ( x , v ) = ~ ( x , v )  for xeOD,  v . n ( x ) > 0  and assume that the 
ingoing mass and energy flux are bounded. Then, for every solution f ( x ,  v) 
of(4.1), 

Is l, ,, <o iv. n(x)l f (x ,  v) dv da(x) <<. c, 

Ysf Iv-n(x)l v2f(x, l.,)dt, dcT(x)~r 
I'.11 < : 0  

for all S c  0s measurable. Here, c~ and c2 are two constants which depend 
only on the boundary values. 

Proposition 4.2. Consider the steady Boltzmann equation (4.1) 
with boundary condition f ( x ,  v) = ~(x,  v) such that the ingoing mass and 
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energy flux are bounded. Let H~ be a hyperplane with normal vector 17o 
and Ho = H; c~ f2 ~ ~ .  Then, for every solution f(x, v) of (4.1), 

IHol V. no)2 f(x, v) dv dcr(x) <~ C 
~3 

where C is a constant which depends only on the boundary values. 

Finally, we mention that numerous numerical examples of solutions of 
steady boundary value problems for the Boltzmann equation are given in 
ref. 9. For more background on the numerical tools and their application, 
we refer to ref. 8 and 10. 
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NOTE ADDED IN PROOF 

We recently noticed that some results for steady boundary value 
problems for large Knudsen numbers, but without trancations of the colli- 
sion kernel, are contained in: Nonlinear Evolution Equations, by Nina B. 
Maslova, World Scientific Singapore 1993. Truncations in the collision 
kernel are avoided there by the use of suitable weight functions in the 
norms. 
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